Exercise 62

Find $f^{\prime}(x)$. Check that your answer is reasonable by comparing the graphs of f and f^{\prime}.

$$
f(x)=\arctan \left(x^{2}-x\right)
$$

Solution

Use the chain rule and the derivatives of the inverse trigonometric functions listed on page 214.

$$
\begin{aligned}
\frac{d f}{d x} & =\frac{d}{d x} \arctan \left(x^{2}-x\right) \\
& =\frac{1}{1+\left(x^{2}-x\right)^{2}} \cdot \frac{d}{d x}\left(x^{2}-x\right) \\
& =\frac{1}{1+\left(x^{4}-2 x^{3}+x^{2}\right)} \cdot(2 x-1) \\
& =\frac{2 x-1}{x^{4}-2 x^{3}+x^{2}+1}
\end{aligned}
$$

